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Introduction

• Selected Motivations

– computational & observational enhancements

offer both new opportunities & new challenges

– need for uncertainty management

• Goals:

– develop probability distribution for unknowns of interest.

– combine information: observations, theory, computer model

output, past experience, etc.

• Framework: Bayesian Hierarchical Models
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Bayesian Hierarchical Modeling (BHM)

• BHM: sequence of conditional probability models

• Quintessential BHM: Data Y; Process of interest X

1. Data Model [ Y | X, θ ]

2. Process Model [ X |θ]
3. Parameter Model [ θ ]

• Bayes’ Theorem: [ X, θ | Y ]

Compare

• “Statistics”: [ Y | θ ] (& [ θ ] for Bayesians)

• “Physics”: [ X | θ̃(Y) ]
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Approaches

1. Stochastic models incorporating science

(a) Physical-statistical modeling (Berliner 2003 JGR)

From “F=ma” to process model [ X |θ ]

Three examples

(b) Qualitative use of theory

(eg., Pacific SST model Berliner et al. 2000 J. Climate)

2. Incorporating large-scale computer models

(a) From model output to priors on

• Parameters [ θ ]

• Model output as samples from process model [ X |θ ]

(b) Model output as “observations” (Y)

3. Combinations
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Lab-Sea Air Model Royle et al 1998

• Process: near-surface (10m) winds W = (U,V)

• Why? Several uses (e.g., driving ocean models)

• Data: Scatterometer-based estimates

• Physics: Geostrophic Approximation “Winds are linear in the

gradient of the pressure field”

vg = c
∂P

∂x
, ug = −c

∂P

∂y

Balance pressure potential & Coriolis

Pretty good at mid-latitudes & upper altitude

Not good at 10m (friction, turbulence); or if large curvature in

pressure field
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Lab Sea Grid and Scatterometer Data
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Stochastic Geostrophic Model

Let (U,V),P be gridded wind vector components and pressure.

• Data Model: [Du,Dv|U,V, σ2
d]: Du

Dv

 ∼ Gau

K
 U

V

 ,

 σ2
dI 0

0 σ2
dI




• Process Model:

– [U,V|P,µu,µv,β,Σuv]: U

V

 ∼ Gau


 µu1 + Bu(β)P

µv1 + Bv(β)P

 ,Σuv ⊗ I∗


B’s: discrete derivative estimates with random coefficients

– [P|µp,Σp] (Thiebaux 1985)

• Parameter priors
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Posterior Means: Winds and Pressure Field
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Glacial Dynamics Berliner et al. 2008 J. Glaciol.

• Flow: gravity moderated by drag (base and sides) & ....

• Simple flow models: flow from geometry.

Data

Program for Arctic Climate Regional Assessments (PARCA)

Radarsat Antarctic Mapping Project (RAMP)

• S: surface topography (Laser altimetry)

• B: basal topography (Radar altimetry)

• U: velocity data (Interferometry)
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Modelling

• Processes: surface; s: base; H: thickness; u: velocity

• Physical Model

– Basal Stress τ = −ρgHs′ + stuff

– Velocities u = ub + β0 H τ n

where ub = k τ p (ρgH)−q

• Our Model

– Basal Stress τ̃ = −ρg H̃ s̃′ + η

where η is a “corrector process”, H̃, s̃ are unknown

– Velocities u = ũb + β H̃ τ̃ n + e

where ub = k τ̃ p (ρg H̃)−q or an unknown constant,

β is unknown, e is a noise process.

– Smoothing
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Air-Sea Interaction Berliner et al 2004 JGR

• Processes:

– Ocean streamfunction ψ (feature related to currents)

– Near-surface winds W

• Data

– Da Wind data (scatterometer)

– Do Ocean data (altimeter)

• Physics: Quasi-geostrophy (QG)

(∇2 − 1

r2
)
∂ψ

∂t
= −J(ψ,∇2ψ)− β∂ψ

∂x
+

1

ρH
curlzτ (W)− γ∇2ψ + ah∇4ψ

• Stochastic: [ψ|W] from QG

Couple with [W] and we’re “done”
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Near-surface Ocean Winds Wikle et al 2001 JASA

• Data sources

– Scatterometer

– NCEP Analyses

• Space-time process model

– Modes of linearized shallow-fluid equations

(large scales)

– Wavelets (small scales)

– Both with time-varying coefficients

• Priors: turbulence theory
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Discussion

• No claim of solving PDE

– we often introduce noise ( but not “solving” SPDE)

– made parameters random

– role of stability (i.e., CFL conditions) depends on data quality

and goals

• No free lunch: Concerns about

– computation (MCMC; importance sampling)

– quality of each component of a BHM

• Transition to Part II: We usually need very large ensembles

Not practical if [ X |θ ] involves a massive computer model
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Combining Models and Observations: Bayesian
Approaches II

Mark Berliner

Ohio State University

Goals

• Develop probability distribution for unknowns of interest.

• Combine information: observations, theory, computer model out-

put, past experience, etc.

• Do all this while accounting for uncertainty

• Framework: Bayesian Hierarchical Models
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Bayesian Hierarchical Modeling (BHM)

• BHM: sequence of conditional probability models

• Quintessential BHM: Data Y; Process of interest X

1. Data Model [ Y | X, θ ]

2. Process Model [ X |θ]
3. Parameter Model [ θ ]

• Bayes’ Theorem: [ X, θ | Y ]

Compare

• “Statistics”: [ Y | θ ] (& [ θ ] for Bayesians)

• “Physics”: [ X | θ̃(Y) ]
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Approaches

1. Stochastic models incorporating science

(a) Physical-statistical modeling (Berliner 2003 JGR)

From “F=ma” to process model [ X |θ ]

(Three examples)

(b) Qualitative use of theory

(eg., Simple Pacific SST model Berliner et al. 2000 J. Climate)

2. Incorporating large-scale computer models

(a) From model output to priors on

• Parameters [ θ ]

• Model output as samples from process model [ X |θ ]

(b) Model output as observations

3. Combinations
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(a) From model output to priors

• Think of model output runs O1, · · · ,On

as a sample from some distribution

• Do data analysis on the O’s to estimate distribution

– develop prior on X: [X] or [X| θ]
– develop [θ]

• Common Example: O’s are spatial fields:

estimate spatial covariance function of X based on O’s.
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Ex) Anthropogenic Climate Change

• Detection & Attribution: CO2 and temperature

• g spatial pattern of anticipated CO2 impacts

(usually based on a climate system model)

• Model: Data = a g + noise

• Test a = 0 vrs a = µc
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BHM Berliner, Levine & Shea 2000 J. Climate 2000

• NCAR Climate System Model (CSM)

• 1000 year control run; 300 year CO2-forced run

• Data: Jones’ surface temperature record
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Process: True Surface Temperature T Record

1. [Data | T] : D ∼ Gau(KT,ΣD)

K maps data to CSM grid; ΣD from literature.

2. [T | a]: T ∼ Gau(aG,ΣT)

3. [a] = pGau(0, τ 2) + (1− p)Gau(µc, τ
2
c)

• ΣT: estimated using the model output.

• g: (CO2-forced output) minus (control output).

• Hyperparameter estimation via subsampling model output.

– Control Run: broken into 30 samples of length 10.

Regress sample onto g.

Produces 30 estimates of a under “no forcing”

Use their variance to estimate τ 2

– Forced Run: similar procedure to estimate µc, τ
2
c
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Analyses

• Let â be generalized least squares estimate of a: Posterior is

[a | â] = p(â)Gau(·, ·) + (1− p(â))Gau(·, ·)

• Uncertainty about uncertainty:

ranges over classes of priors and as p varies

• P(a ≈ 0 | â) & P(a ≈ µc | â)
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(b) Model output as observations

• Act as if no formal difference between model output

& observations

• In many cases “observations” are “model output”

• Nice way to combine information sources

“Observe” what you can; compute what you can’t”

• Experimental Design

Combined observational-computer model experiments

• Other contexts!! (weather forecasting)
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Multimodel ensembles as observations

• Set-up: m = 1, . . . ,M models.

Scalar (for now) climate variable X. (time fixed)

• Data Model: Three Main Steps:

For kth ensemble member from Model m:

Ymk = µm + emk, (Step 1)

= (β + bm + eµm
) + emk, (Step 2)

= ((X + eβ) + (b0m + ebm) + eµm
) + emk, (Step 3)

• X vrs β is key
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Formally:

~Ym: ensemble of size nm of derived estimates of X from model m.

1. Given means and variances µm,σ2
Ym

;
~Ym are independent and

~Ym|µm ∼ Gau(µm
~1nm,σ2

Ym
Inm)

2. Given β, biases bm and variances σ2
µm

;

µm are independent and

µm|β,bm ∼ Gau(β + bm, σ2
µm

)

3. Given X,

β|X ∼ Gau(X, σ2
β) and bm|X ∼ Gau(b0m,σ2

bm
)
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Implied Marginal: “Y given X”

Integrating out β induces dependence:

~Y1
~Y2
...

~YM


|X ∼ Gau





(X + b01)~1n1

(X + b02)~1n2
...

(X + b0M)~1nM


,



Σ1 C12 . . . C1M

C21 Σ2 . . . C2M
... ...

CM1 . . . . . . ΣM




,

• Cmm′ is nm × nm′ with all entries σ2
β

• v2
m = σ2

µm
+ σ2

bm
and

Σm =



σ2
β + v2

m + σ2
Ym

σ2
β + v2

m . . . . . .

σ2
β + v2

m σ2
β + v2

m + σ2
Ym

. . . . . .
... ...

. . . . . . . . . σ2
β + v2

m + σ2
Ym
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Remarks

• Covariances in marginal

– Modify intuition about value of increasing ensemble size

– Infinite ensembles do not give “perfect” forecasts:

if all biases are 0, “infinite” ensembles tell the value of β,

not X

• d dimensional X: σ’s become Σ’s
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Hemispheric Surface Temperatures

• d=2. X: hemispheric- & monthly-averaged surface temp’s

• Observations Y: 1882-2001. Model output O: 2002-2097.

• M=2: PCM, CCSM (THANKS: Claudia Tebaldi, NCAR)

Background

• Anthropogenic Climate Change:

– CO2 emissions forecasts: IPCC-SRES scenarios (we used 3)

– Plugged into models: Climate forecasts

• Our view here

– Climate-weather: multiscale phenomena

– “Climate” as parameters of distribution of “weather”

(Berliner 2003: Stat. Sci.)
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Model Overview

1. [Y|Xp,θ][O|Xf ,θ]

• [Y|Xp,θ]: measurement error model

• [O|Xf ,θ]: 3 stage data model above, with

– conditional independence of O over time.

– covariances Σβ,Σµm
,ΣYm and biases constant

– Σµm
+ ΣYm = Σm
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2. [Xp|θ][Xf |Xp,θ]

• Time series models (AR) with time varying parameters

Xt = αi(t) +

ηn
j(t) 0

0 ηs
j(t)

 (Xt−1 −αi(t−1)) + e(t)

• Correlated errors

3. [θ]

• Time evolution: αi(t) slow; ηj(t) moderate; et fast

(but variances of et slow)

• αi = a + b CO2i + noise

• Obs period: ηj = c + d SOIj + noise

Fore period: AR model (i.e., SOI not observed)

• Variances of et: AR-like

• Model selection!!!

Used Obs period data only: slow: 8 years; moderate: two years
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Remarks

• Relax simplifications; assess model.

• Information on covariances: climate model assessment;

overlap real observations and model output.

• Prior on biases in fore. period are crucial

• Model classes: Model different β’s

– Combine huge (expensive) & simple (cheap) models

– One model with different parameterizations

• Dimension reduction: selection of climate variables

• Picking the models to use as data vrs the prior on X

• Uninformative priors for X
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Discussion

• Combine observations and model output

Wikle et al. (2001) JASA, Hoar et al. (2003) JCGS

– Spatio-temporal tropical ocean winds

– Model: features of linearized PDE & a bit of turbulence

– Data: Scatterometer & “Analysis Fields”

• Simple models in conjunction with BHM may be better than

either “more faithful models” or “statistical models”

47


